XYLELLA NDP

Validation and Endorsement process

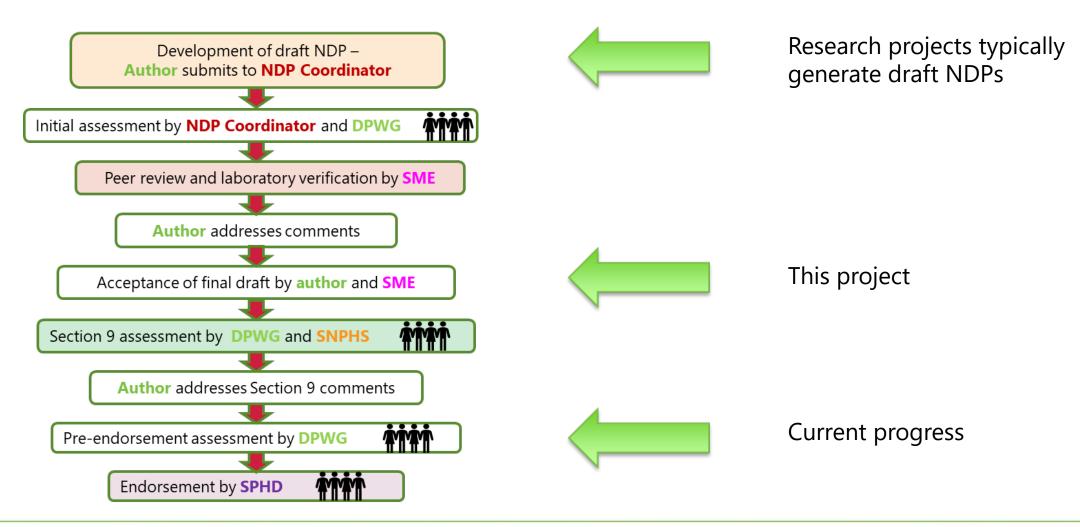
Rachel Mann

NATIONAL DIAGNOSTIC PROTOCOLS (NDPs)

- Essential tools for the accurate and consistent identification of exotic pests and diseases
- > Developed for

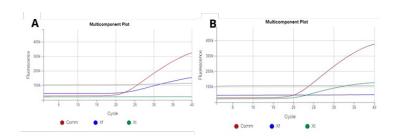
National Priority Plant Pests (NPPPs)

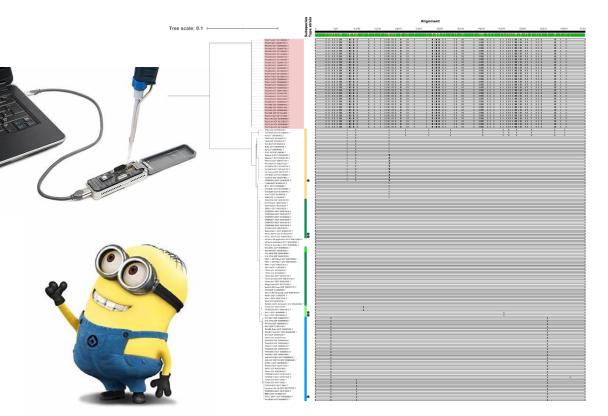
Exotic Environmental Pests (EEPs)


High Priority Plant Pests (HPPs)

NDP 45: Adult *Trogoderma granarium*, dorsal view. Two different coloured setae clearly visible (DPIRD, P Scanlon)

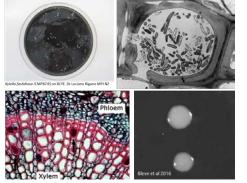
NDP 49: Disease symptoms of *Fusarium oxysporum* f. sp. *cubense* TR4 affecting Cavendish clones at the Coastal Plains Banana Quarantine Station, Northern Territory


Literature Review


- Existing diagnostics (lab and field)
- Gaps in existing diagnostics

Lack of generic tests for *Xylella* screening

Genome informed assays to detect all known Xylella spp designed in this project:


- qPCR assays (DPI NSW)
- endpoint assay (DPI NSW)
 - coupled with MINION for rapid subspecies differentiation
- LAMP assays (AgVIC)

The specificity of 14 PCR assays (quantitative and endpoint) evaluated on a total of 81 samples:

Diverse strains of Xf

Xf-infected insect hosts

Abbott et al 2011

Closely related bacteria

Xf-infected and uninfected plant host tissue

Collection	ID Sample Type	e Host	Exp. Result	Xf-specific Endpoint PCR and LAMP		Xf-specific qPCR				Generic Xylella Endpoint PCR			Generic <i>Xylella</i> qPCR						
				Minsavage et al 1994 (PCR)		Harper et al 2010	Agiletti et al 2019	Ouyang et al 2013	Li et al 2013	Francis et al 2006	Dupas et al 2019	lto & Chiaki 2021	Xylella Generic X 1	(ylella Generic 2	Multiplex specie Xylella spp	s differentiati Xf	ion (This project) Xt	Ito & Suzaki 2017	Ito & Chiaki 2021
ylella DNA from culture																			
ICMP 8731	Xff	Vitis vinifera	+ve	+ve	46.24	23.9	27.45	26.6	23.63	25.6	23.94	+ve	+ve	+ve	22.14	22.7	UD	19.99	18.56
ICMP 8739	Xfm	Prunus dulcis	+ve	+ve	51.86	20.4	30.09	29	23.88	27.41	26.79	+ve	+ve	+ve	24	24.7	UD	20.36	18.87
ICMP 8740	Xfm	Platanus occidentalis	+ve	+ve	47.27	23.47	28.86	26.97	24.4	26.9	19.79	+ve	+ve	+ve	30.99	31.7	UD	18.78	16.19
ICMP 8742	Xf	Ulmus americana	+ve	+ve	42.35	23.28	26.98	25.29	22.54	24.79	24.21	+ve	+ve	+ve	20.5	20.7	UD	16.46	16.45
ICMP 8745	Xff	Ambrosia artemisiifolia	+ve	+ve	49.11	27.28	29.97	28.9	26.47	28.47	26.74	+ve	+ve	+ve	24.88	25.7	UD	22.99	21.87
ICMP 15197	Xff	Vitis vinifera	+ve	+ve	38.83	26.64	29.16	29.14	26.65	26.98	20.72	+ve	+ve	+ve	25.05	25.6	UD	24.95	20.43
Closelyrelated bacteria																			
DAR 65801 3	Stenotrophomor	as	UD	+ve	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
DAR 72045	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	29.44	UD
DAR 75512	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
DAR 76132 3	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	18.01	29.41
DAR 77232	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	17.36	31.28
DAR 77233	Stenotrophomor	as	UD	UD	UD	35.69	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	18.47	28.01
DAR 77234	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	17.31	29.63
DAR 77236	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	18.82	28.87
DAR 77237	Stenotrophomor	as	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
DAR73877	Kanthomonas ve	sicatoria	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
DAR35705	Kanthomonas tra translucens	anslucens pv	UD	UD	UD	UD	UD	UD	21.41	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
DAR49849	Kanthomonas ho	ortorum	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
DAR33337	Kanthomonas ar	boricola	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD
	Kanthomonas ca Dhaseoli	mpestris pv	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD	UD

A short list of **five** of the best performing **PCR tests** was further evaluated:

- Endpoint PCR generic *Xylella* spp. assay (This project 2021)
- Generic qPCR *Xylella* spp. and Xt (This project 2021).
- qPCR for Xf by Harper et al (2010, erratum 2013)
- qPCR for Xf by Ouyang et al (2013)
- qPCR for Xf by Dupas et al (2019)

Six different **isothermal assays** were assessed in an Australian setting (including assays designed in this project).

Department of Primary Industries and Regional Development

GOVERNMENT OF WESTERN AUSTRALIA

SPECIFICITY OF PCR ASSAYS – AUS NZ

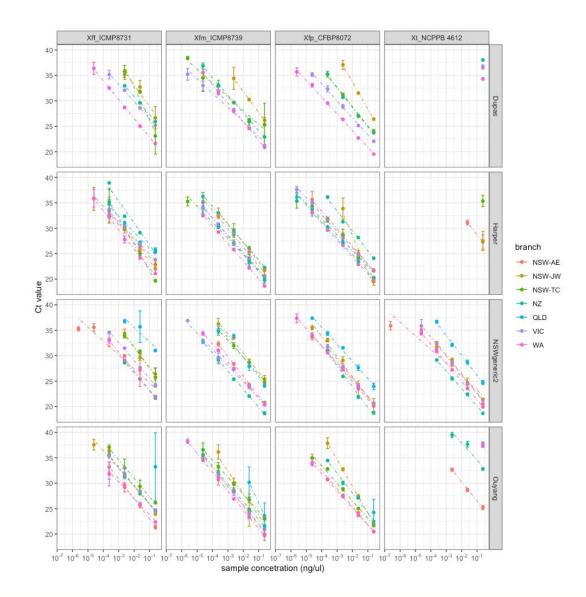
Xylella spp panels Closely related bacteria panels

A total of 403 individual plant samples

covering 49 host genera

Acer spp.	Jacaranda mimosifolia	Murtus sp (Myrtle)	
Anacardium occidentale	Lavandula sp	Nandina sp.	
Bixa orellana	Liquidambar sp.	Nerium oleander	
Canna sp.	Litchi chinensis	Nicotiana tabacum	
Citrus spp.	Macadamia integrifolia	Olea europaea	
Eugenia uniflora	Malpighia emarginata	Pelargonium sp.	
Euphorbia sp.	Malus domestica	Persea americana	
Fortunella sp	Mangifera indica	Platanus acerifolia	
Fragaria × ananassa	Moringa oleifera	Plumeria	
Ginkgo sp.	Morus rubra	Polygala myrtifolia	
Hibiscus sp.	Murraya koenigii	Portulaca sp.	

Prunus spp.
Psidium guajava
Pyrus pyrifolia
Quercus sp.
Rosa sp.
Rosmarinus sp.
Rubus idaeus
Semecarpus australiensis
Ulmus
Vaccinium spp
Vitis spp



SENSITIVITY

qPCR assays were more sensitive than the endpoint PCR as a screening test

All assays had comparable sensitivity for detection of isolates of different Xf subspecies and no apparent detection bias towards one subspecies was observed.

LABORATORY ASSAYS

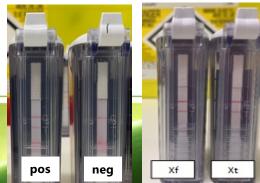
The qPCR assay of Harper et al (2010, erratum 2013) provided the most reproducible results when run by different operators using different assay reagents and thermocycling devices.

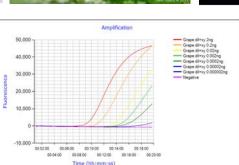
All five assays are included in the Xylella spp. NDP.

The two primary assays recommended are the Harper et al (2010, erratum 2013) qPCR assay and the generic endpoint PCR (this project)

Asian pear samples

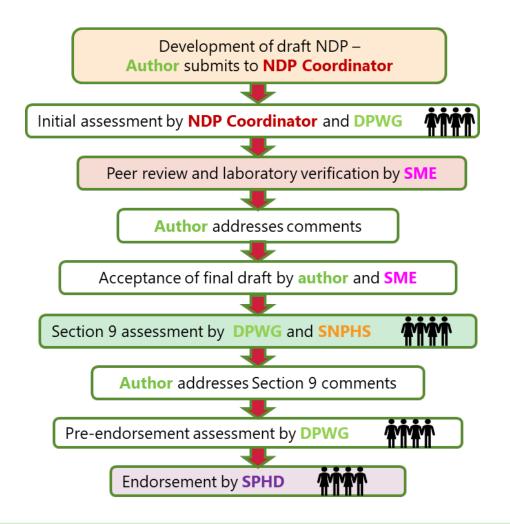
The two primary assays recommended are the Harper et al (2010, erratum 2013) qPCR assay and the generic endpoint PCR (this project)




IN-FIELD DETECTION OF XYLELLA

Goal: In-field detection capability ready for application in the field by field officers included in a revised Australian NDP for *Xylella*

- Isothermal in-field assays (LAMP and RPA) identified as the technology most field ready and transferable to field officers
- Six different isothermal assays were assessed in an Australian setting (including assays designed in this project). Assessed on:
 - Specificity
 - Sensitivity
 - Ease of use by operator
- Recommendation for inclusion in the NDP:
 - LAMP of Harper et al (2010) (Real-time)
 - As published
 - Optigene kit
 - Agdia Amplify RP® XRT kit
- 100% specificity against 149
- samples
 - 10 -1000 x less sensitive than gPCR



	DNA		Harper qPCR	Optigen X	f LAMP kit	Harpe	r LAMP	Agdia		
	Conc	Sample Name	Ct Mean	Тр	AD	Тр	AD	RPA Tp	LFD	
	2.40E-01	XFPD1	21.7	13.9	89.5	7.2	88.7	5:30	Positive	
	2.40E-02	XFPD2	24.7	16.7	89.4	8.9	88.7	8:00	Positive	
	2.40E-03	XFPD3	28.1	23.9	88.9	15.4	88.4	13:15	Positive	
•	2.40E-04	XFPD4	31.9	UD	UD	14.9	87.9	UD	UD	
•	2.40E-05	XFPD5	35	UD	UD	22.2	87.9	UD	UD	
L	2.40E-06	XFPD6	37.6	UD	UD	UD	77.5	UD	UD	
	2.40E-07	XFPD7	UD	UD	UD	UD	77.4	UD	UD	

BIOSECURITY PREPAREDNESS

- Streamlined NDP endorsement process
- NDP assays are already adopted in 4 major node laboratories in AUS and 1 in NZ
 - Ability to rapidly identify detections to subspecies and ST
- Up to date sampling strategies with images
- Controls available to Australian laboratories

AKNOWLEDGEMENTS

Project Activities:

Project Team:

Review

DPI NSW

- Toni Chapman
- Johanna Wong
- John Webster
- AgVIC
 - Rachel Mann
 - Pragya Kant
 - Fiona Constable
- MPI NZ
 - Robert Taylor
 - Luciano Rigano
- QDAF
 - Rebecca Roach
 - Cherie Gambley
- DPIRD
 - Monica Kehoe
 - Dominie Wright

Harsh Garg

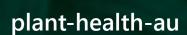
- Elisse Nogarotto
- David Lovelock
- DPWG
- NSPWG
- SNPHS
- SPHDS

Additional support:

- Craig Elliot
- Mark Whattam
- Greg Chandler
- Penny Measham
- Adrian Dinsdale
- Brendan Rodoni

lanthealthaustralia.com.a

Plant Health



LET'S GET SOCIAL

Follow us for the latest in plant biosecurity

planthealthaust

planthealthaustralia

planthealthaust

